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1. Introduction

Recently, a new approach to the perturbative calculations in Yang-Mills (YM) theory has

been suggested by Cachazo, Svrček and Witten (CSW) [1]. In this new formalism, the

vertices are obtained from the so-called MHV-amplitudes (i.e. the amplitudes maximally

violating the helicity) by a suitable continuation off shell. This technique was shown to

reproduce all known gluon tree amplitudes and predicts a number of new results [2]. The

successful generalization for the one-loop amplitudes has been also developed [3] although

a new additional vertex has to be added at one-loop level in YM theory without super-

symmetry. The MHV-like diagrams for the gravity case have been formulated as well [4].

A complete list of references can be found in [5].

In this paper we address the question of equivalence between the MHV diagrams and

the conventional YM perturbation theory expansion. The MHV diagram rules can of course

be described with help of an action functional, which we call the CSW action. It turns

out that there exists a change of variables transforming the standard YM action to the

CSW action. The formula for such a change of variables is obtained as follows. First, we

recall a certain solution to the self-duality equation which serves for a swift derivation of

the MHV-amplitudes [6, 7]. This self-dual gauge field can be continued off shell in the

spirit of ref. [1] and provides very explicit change of variables which brings YM lagrangian

in the light-cone gauge into the form of CSW lagrangian. At present, we can check this

by a brute-force calculation only and feel that a better, more conceptual understanding of

our result is needed. This is despite the fact that the formula for the change of variables is

perfectly explicit and the geometrical origin of the self-dual solution behind it seems to be

well understood. Therefore, we give here those explicit formulas and postpone the detailed

proofs to a future publication.
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The paper is organized as follows. First, we remind the MHV diagram rules (section 2)

and present the YM action in the light-cone gauge (section 3). Then, in section 4 we

describe a solution to the self-duality equation which is relevant to the MHV-amplitudes.

A change of variables in the light-cone YM action, which renders it to the CSW action, is

introduced in section 5. Some open questions are mentioned in the concluding section.

2. MHV diagrams

Let us remind main points concerning MHV diagrams. The basic ingredient is MHV

(−−,+ . . . +) amplitude describing the tree scattering of two gluons of negative helicity

and arbitrary number of positive helicity gluons. The amplitude turns out to be a simple

rational function of on-shell momenta of massless particles and reads as [8, 9]

A(1−, 2−, 3+ . . . , n+) = gn−2 〈1, 2〉4

〈1, 2〉〈2, 3〉 . . . 〈n, 1〉
(2.1)

where the on-shell momentum of massless particle in the standard spinor notations reads as

paȧ = λaλ̃ȧ, λa and λ̃ȧ are positive and negative helicity spinors. Inner products in spinor

notations read as 〈λ1, λ2〉 = εabλ
a
1λ

b
2 = 〈1, 2〉 and [λ̃1, λ̃2] = ε

ȧḃ
λ̃ȧ

1λ̃
ḃ
2. These amplitudes were

interpreted as correlators in the auxiliary two-dimensional theory in [10] and in terms of

topological string on twistor target space in [11]. There are no amplitudes with zero or one

negative helicity gluons at the tree level however these amplitudes emerge at one-loop level

in the YM theory without supersymmetry [12]. For instance, one-loop all-plus amplitude

reads as

Aone−loop(+, . . . ,+) = gn
∑

1≤i1<i2<i3<i4≤n

〈i1, i2〉[i2, i3]〈i3, i4〉[i4, i1]

〈1, 2〉〈2, 3〉 . . . 〈n, 1〉
(2.2)

It was suggested in [1] that conventional YM diagrams in both supersymmetric and

non-supersymmetric gauge theories can be reorganized in the different way which nowadays

is known as MHV diagrams or CSW lagrangian. The building blocks of this diagrammat-

ics are MHV vertices extended off-shell and the canonical propagator 1

P 2 involving (+−)

degrees of freedom and connecting two MHV vertices. The continuation off-shell suggested

in [1] for λ in any internal line reads as

λa = pa,ȧη
ȧ (2.3)

where η is arbitrary spinor fixed for off-shell lines in all diagrams relevant for a given

amplitude.

At higher loops the situation turns out to be more subtle at least in the theory without

supersymmetry. The non-vanishing all-plus one-loop amplitude can not be derived from

MHV vertices only that is why it was suggested in [3] that one-loop all-plus diagram has

to be added to the CSW lagrangian as a new vertex. It was also argued that there is no

need to add one-loop vertex (−,+ . . . +) to new lagrangian. The situation in SUSY case

is more safe since these amplitudes vanish however even in this case it is unclear if new

vertices have to be added to reproduce higher loops results.
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In spite of the considerable success of this approach its conceptual origin remained

obscure and it was unclear how these effective degrees of freedom involved into the CSW

lagrangian are related with the conventional YM gauge fields. It is the goal of this paper

to argue that these effective degrees of freedom emerge from the standard YM variables in

the light-cone gauge upon the particular ”dressing ” procedure.

3. Yang-Mills on the light cone

In this section we briefly discuss YM theory in the light-cone gauge which involves only

two physical degrees of freedom. The lagrangian of YM theory in the light-cone variables

has been found in N=4 SUSY case [13, 14]. In what follows we shall exploit Mandelstam

two-field formulation [13] which has been successfully used recently in one-loop calculations

in YM theories with different amount of supersymmetry [15]. Two fields Φ+ and Φ− are

related with the physical transverse degrees of freedom of the gluon as follows

Φ−(x) = ∂−1
+ A(x), Φ+(x) = ∂+Ā(x) (3.1)

We shall be interested in the non-supersymmetric theory with the action in A+ = 0

gauge

S =

∫

d4x[Φa
+¤Φa

− + 2gfabc∂+Φa
−∂̄Φb

−Φc
+ + 2gfabc∂2

+Φa
−∂−2

+ ∂Φb
+∂−1

+ Φc
+

− 2g2fabcfade∂−2
+ (∂+Φb

−Φc
+)(∂−1

+ Φd
+∂2

+Φe
−)] (3.2)

where ∂ = 1√
2
(∂x1

+ i∂x2
) is derivative with respect to the transverse coordinates x1, x2

and ∂̄ = ∂∗. The action contains local and non-local triple vertices as well as non-local

quartic vertex.

Let us make a few comments on the form of the action (3.2). First note that it involves

two fields of dimensions 0 and 2 hence positive and negative helicity fields enter lagrangian

asymmetrically. In particular, vertex (−++) is local in the coordinate space while (−−+)

is not. There are two classes of solutions to the equations of motion which correspond to

the self-duality and anti-self-duality equations written in a little bit unusual form, namely

Φ− = 0 ¤Φ+ = (Φ+,Φ+) (3.3)

and

Φ+ = 0 ¤Φ− = {Φ−,Φ−} (3.4)

where the schematically written r.h.s. are obtained by the variations of the cubic terms in

the action (3.2).

Note that the truncation of the light-cone action to the first two terms which amounts

to the self-dual equation of motion for the negative helicity field has been discussed in

the context of MHV amplitudes in [17]. However this truncation evidently can not be

equivalent to the full YM theory we are dealing with. The action (3.2) is gaussian with

respect to both fields that is one of them can be integrated out yielding highly nontrivial

effective action with a non-canonical kinetic term for the other.
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4. MHV vertex from self-duality equation

The essential ingredient of the MHV diagrams is MHV vertex and in this section we shall

argue that solution to the self-duality equation with the particular boundary conditions

serves as the generating function for all MHV amplitudes. This fact has been recognized

some time ago by Bardeen [6] and has been elaborated further in [7, 16 – 18]. In what follows

just this solution to the self-duality equation provides the desired change of variables from

conventional YM to MHV formalisms.

Let us briefly remind the derivation of the perturbiner solution to the self-duality

equation following [7]. The self-dual perturbiner yields the form-factor of the one off-shell

gluon between the vacuum and arbitrary number of gluons of the same helicity, momenta pj

and color orientations tj. The starting point is the transition to the twistor representation

with the additional spinor homogeneous coordinate ρα on the auxiliary CP 1. The self-

duality equation in the twistor representation is equivalent to the zero-curvature condition

[∇α̇∇β̇] = 0 (4.1)

where ∇α̇ = ρα∇α̇,α. Hence the solution to the self-duality equation can be represented in

the following form

Aα̇ = g−1∂α̇g (4.2)

where ∂α̇ = ρα∂α̇,α , Aα̇ = ραAα̇,α and g is group valued function depending on ρ and x, as

well as on the quantum numbers pj and tj of the external particles. We assume that Aα̇ is a

polynomial of degree one in ρ. Then the group element necessarily has to be meromorphic

function of ρ of degree zero such that connection Aα̇ is regular at the poles.

The perturbiner is defined as a solution to the self-duality equation of the shape of a

formal expansion in the (non-commuting) variables Ej = tje
ipjx, which are essentially the

plane waves of the external gluons of the same, say positive, helicity. That is we look for

the group element providing the solution to the zero curvature equation in the following

form

gptb(ρ) = 1 +
∑

j

gj(ρ)Ej + · · · +
∑

j1...jL

gj1...jL
(ρ)Ej1 . . . EjL

+ · · · , (4.3)

where different terms with L of E’s correspond to different color orderings in the form-

factors with L external particles. The regularity of the connection at the poles leads us

immediately to a unique solution for coefficients of the expansion of gptb(ρ) [7]:

gj1...jL
(ρ) =

〈ρ, q〉

〈ρ, j1〉〈j1, j2〉〈j2, j3〉 . . . 〈jL−1, jL〉
(4.4)

where the so-called reference spinor qα is the one which enters into the polarization vectors

ε
j
α̇,α = qαλ̃

j
α̇.

The corresponding connection Aptb can be found upon the substitution of the solution

into (4.2). Let us note that perturbiner solution itself is localized on the line in the twistor

space if one performs half-Fourier transforms for all massless particles involved in the form-

factor similar to [11].
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The perturbiner solution describes form-factor or off-shell current of the form

〈Aα̇,α(k)〉k1,...,kn
where the gluon with momentum k is off-shell while all other gluons are

on-shell and have the same helicity. Using the explicit form of the solution one can verify

that this form-factor has no pole in k2 and, hence, gives zero upon the application of the

reduction formula. This corresponds to the vanishing of the amplitude with all but one

gluons of the same helicity.

To get MHV amplitudes from the perturbiner solution one has to consider the lin-

earized YM equation in the background of the perturbiner. The most compact form of the

generating function for MHV amplitudes has the following structure [7]

M(k1, k2) = 〈1, 2〉2
∫

d4xTr[E1g
−1

ptbE2gptb], (4.5)

where k1, k2 are momenta of the negative helicity gluons and plane waves corresponding

to the positive helicity gluons are substituted into gptb. The group elements which depend

on the twistor variable have to be taken at points ρi corresponding to the momenta of

negative helicity gluons.

5. Change of variables

Let us turn to the central point of our paper and describe the proper non-local change of

variables. First, let us comment on the choice we shall make in a moment. In the light-cone

action there is nontrivial (− + +) vertex which has to be absent in the CSW lagrangian.

That is change of variables has to provide the removal of this term. It enters the equation

of motion for Φ+ which reduces to the self-duality equation if Φ− = 0. Hence we expect

that change of variables we are looking for should map self-duality equation to the Laplace

equation. Actually perturbiner solution to the self-duality equation does this job.

To describe new variables precisely let us represent combination involved in the equa-

tion of motion for the light-cone variable Φ+ at Φ− = 0 in the form

¤Φ+ + (Φ+,Φ+) = ∂+F ′(φ+, ∂−1
+ ¤φ+) (5.1)

where the following notation is assumed δF = F ′(φ, δφ). Now introduce new variable φ+

by

Φ+ = F (φ+) (5.2)

The convenient choice for the second field φ− is dictated by the canonicity of the (+−)

propagator in new variables which yields

Φ− = ∂−4
+ F ′(φ+, ∂4

+φ−) (5.3)

The correct form of the propagator can be checked with the help of relation

∫

d4xTr[F ′(φ, v)∂−3
+ F ′(φ, u)] =

∫

d4xTr[u∂−3
+ v] (5.4)

valid for arbitrary u and v.

– 5 –
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Now we are ready to make a link with the previous section. It turns out that

F (φ+) = ∂+g−1

ptb(φ+)∂gptb(φ+) (5.5)

where group element in (5.5) is effectively continued off-shell. That is the off-shell field φ+

is considered in gptb instead of the plane wave and momenta of plane waves are substituted

by the corresponding derivatives

Φ+ = ∂2
+

∑

n≥1

1

∂+,1〈∂̄1∂̄2〉 . . . ∂+,n

φ+ . . . φ+
︸ ︷︷ ︸

n

(5.6)

where ∂̄k = ∂α,k acts on the k-th term in the product. Effectively the change of variables

above kills (++−) vertex in the action and maps solution to the self-duality equation to the

solution to the free Laplace equation. The rest of the check concerns the interaction part

of the lagrangian. We have verified that (− − +) and (+ + −−) vertices in the light-cone

lagrangian get combined together into the correct interaction terms in CSW lagrangian.

That is we have argued that change of variables from light-cone YM fields yields at the tree

level both correct propagator and vertices in the CSW lagrangian. Hence just fields φ−φ+

play the role of twistor degrees of freedom corresponding to positive and negative helicities.

The technical details concerning the change of variables shall be presented elsewhere.

Let us make a few comments on the one-loop extension of the CSW lagrangian. As we

have already mentioned in the non-supersymmetric case it has to be extended by all-plus

one-loop amplitude. The possible origin of such correction is clear in our approach - there

is jacobian of the change of variables. We have not proved that jacobian reproduces the

desired answer but there are several arguments favoring this possibility. Naively the change

of variables discussed is expected to be canonical that is if we would work with the system

with finite number degrees of freedom then it would equal to one. However the theory

at hands enjoys infinite dimensional phase space hence one could expect the anomalous

jacobian of the canonical transformations. Second argument concerns the form of the

naive jacobian which involves only powers of φ+ as expected. Moreover if the additional

one-loop term follows from the jacobian indeed then the absence of such terms in SUSY

case could be attributed naturally to the standard SUSY cancellations.

Note that in principle the second similar change of variables can be done which would

kill the (− − +) vertex as well. Upon this change the action would involve only quartic

and higher interaction terms however the possible usefulness of such action is unclear to

us at present.

6. Discussion

In this short note we questioned the relation between the conventional YM variables and

effective degrees of freedom in the CSW lagrangian. The answer turns out to be remark-

ably simple - they are related just by the non-local change of variables. Tree diagrams

are perfectly reproduced upon this change while the evident candidate for the one-loop

completion of the action is the corresponding jacobian. Moreover our consideration implies

that one should not expect additional terms in the CSW lagrangian at higher loops.

– 6 –
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The immediate question in our approach concerns the twistor interpretation of the

suggested change of variables. We expect that the interpretation of the perturbative YM

theory in terms of the string on the twistor manifold [11] matches the twistor interpretation

of the perturbiner developed in [7]. Of course the most interesting question raised in [6]

concerning the expected relation with some hidden integrability-like structure responsible

for the nullification of the infinite number of tree amplitudes remains open. Nevertheless

we believe that our work could be useful for this line of reasoning.

There are several possible generalizations. First, supersymmetric case can be con-

sidered along this way starting with the corresponding light-cone formulation [13]. The

perturbiner solution in the supersymmetric case has been found in [19]. It is known as well

for the gravity case [20]. One more line of generalization concerns QED with massless or

massive fermions. Recently MHV-type technique for tree QED was developed [21] which

naturally captures the soft photons limit while the example of the stringy picture for MHV

QED amplitude has been found in [22]. The change of variables could be found in this case

as well and we expect that effective fermionic fields in MHV formulation of QED involve

original fermions dressed by the infinite number of positive or negative helicity photons.

Acknowledgments

We are grateful to A. Gerasimov, V.A. Khoze and A.Vainshtein for the useful discussions.

The work of A.G. was supported in part by grants CRDF RUP2-261-MO-04 and RFBR-04-

011-00646 and work of A.R. by grants RFBR-03-02-17554, NSch-1999.2003.2 and INTAS-

03-51-6346. A.G. thanks FITP Institute at University of Minnesota where the paper has

been completed for the kind hospitality and support.

References

[1] F. Cachazo, P. Svrcek and E. Witten, Mhv vertices and tree amplitudes in gauge theory,

JHEP 09 (2004) 006 [hep-th/0403047].

[2] C.-J. Zhu, The googly amplitudes in gauge theory, JHEP 04 (2004) 032 [hep-th/0403115];

J.-B. Wu and C.-J. Zhu, MHV vertices and scattering amplitudes in gauge theory, JHEP 07

(2004) 032 [hep-th/0406085];

J.-B. Wu and C.-J. Zhu, MHV vertices and fermionic scattering amplitudes in gauge theory

with quarks and gluinos, JHEP 09 (2004) 063 [hep-th/0406146];

G. Georgiou and V.V. Khoze, Tree amplitudes in gauge theory as scalar MHV diagrams,

JHEP 05 (2004) 070 [hep-th/0404072];

L.J. Dixon, E.W.N. Glover and V.V. Khoze, Mhv rules for Higgs plus multi-gluon amplitudes,

JHEP 12 (2004) 015 [hep-th/0411092];

T.G. Birthwright, E.W.N. Glover, V.V. Khoze and P. Marquard, Collinear limits in QCD

from MHV rules, JHEP 07 (2005) 068 [hep-ph/0505219];

D.A. Kosower, Next-to-maximal helicity violating amplitudes in gauge theory, Phys. Rev. D

71 (2005) 045007 [hep-th/0406175];

I. Bena, Z. Bern and D.A. Kosower, Twistor-space recursive formulation of gauge theory

amplitudes, Phys. Rev. D 71 (2005) 045008 [hep-th/0406133];

K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206].

– 7 –

http://jhep.sissa.it/stdsearch?paper=09%282004%29006
http://xxx.lanl.gov/abs/hep-th/0403047
http://jhep.sissa.it/stdsearch?paper=04%282004%29032
http://xxx.lanl.gov/abs/hep-th/0403115
http://jhep.sissa.it/stdsearch?paper=07%282004%29032
http://jhep.sissa.it/stdsearch?paper=07%282004%29032
http://xxx.lanl.gov/abs/hep-th/0406085
http://jhep.sissa.it/stdsearch?paper=09%282004%29063
http://xxx.lanl.gov/abs/hep-th/0406146
http://jhep.sissa.it/stdsearch?paper=05%282004%29070
http://xxx.lanl.gov/abs/hep-th/0404072
http://jhep.sissa.it/stdsearch?paper=12%282004%29015
http://xxx.lanl.gov/abs/hep-th/0411092
http://jhep.sissa.it/stdsearch?paper=07%282005%29068
http://xxx.lanl.gov/abs/hep-ph/0505219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C045007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C045007
http://xxx.lanl.gov/abs/hep-th/0406175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C045008
http://xxx.lanl.gov/abs/hep-th/0406133
http://jhep.sissa.it/stdsearch?paper=12%282005%29003
http://xxx.lanl.gov/abs/hep-th/0508206


J
H
E
P
0
1
(
2
0
0
6
)
1
0
1

[3] F. Cachazo, P. Svrcek and E. Witten, Twistor space structure of one-loop amplitudes in

gauge theory, JHEP 10 (2004) 074 [hep-th/0406177];

A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4

super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214];

J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop

amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108];

C. Quigley and M. Rozali, One-loop mhv amplitudes in supersymmetric gauge theories, JHEP

01 (2005) 053 [hep-th/0410278].

[4] S. Giombi, R. Ricci, D. Robles-Llana and D. Trancanelli, A note on twistor gravity

amplitudes, JHEP 07 (2004) 059 [hep-th/0405086];

V.P. Nair, A note on MHV amplitudes for gravitons, Phys. Rev. D 71 (2005) 121701

[hep-th/0501143];

N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, MHV-vertices for

gravity amplitudes, hep-th/0509016.

[5] F. Cachazo and P. Svrcek, Lectures on twistor strings and perturbative Yang-Mills theory,

PoS RTN2005 (2005) 004 [hep-th/0504194].

[6] W.A. Bardeen, Selfdual Yang-Mills theory, integrability and multiparton amplitudes, Prog.

Theor. Phys. Suppl. 123 (1996) 1.

[7] A.A. Rosly and K.G. Selivanov, On amplitudes in self-dual sector of Yang-Mills theory, Phys.

Lett. B 399 (1997) 135 [hep-th/9611101].

[8] S.J. Parke and T.R. Taylor, An amplitude for N gluon scattering, Phys. Rev. Lett. 56 (1986)

2459.

[9] F.A. Berends and W.T. Giele, Recursive calculations for processes with N gluons, Nucl. Phys.

B 306 (1988) 759.

[10] V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215.

[11] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math.

Phys. 252 (2004) 189 [hep-th/0312171].

[12] G. Mahlon, Multi - gluon helicity amplitudes involving a quark loop, Phys. Rev. D 49 (1994)

4438 [hep-ph/9312276];

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226];

Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop n gluon amplitudes with

maximal helicity violation via collinear limits, Phys. Rev. Lett. 72 (1994) 2134

[hep-ph/9312333].

[13] S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N=4 model, Nucl.

Phys. B 213 (1983) 149.

[14] L. Brink, O. Lindgren and B.E.W. Nilsson, N=4 Yang-Mills theory on the light cone, Nucl.

Phys. B 212 (1983) 401.

[15] A.V. Belitsky, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Dilatation operator in

(super-) Yang-Mills theories on the light-cone, Nucl. Phys. B 708 (2005) 115

[hep-th/0409120].

[16] D. Cangemi, Self-dual Yang-Mills theory and one-loop maximally helicity violating

multi-gluon amplitudes, Nucl. Phys. B 484 (1997) 521 [hep-th/9605208].

– 8 –

http://jhep.sissa.it/stdsearch?paper=10%282004%29074
http://xxx.lanl.gov/abs/hep-th/0406177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB706%2C150
http://xxx.lanl.gov/abs/hep-th/0407214
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB712%2C59
http://xxx.lanl.gov/abs/hep-th/0412108
http://jhep.sissa.it/stdsearch?paper=01%282005%29053
http://jhep.sissa.it/stdsearch?paper=01%282005%29053
http://xxx.lanl.gov/abs/hep-th/0410278
http://jhep.sissa.it/stdsearch?paper=07%282004%29059
http://xxx.lanl.gov/abs/hep-th/0405086
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C121701
http://xxx.lanl.gov/abs/hep-th/0501143
http://xxx.lanl.gov/abs/hep-th/0509016
http://xxx.lanl.gov/abs/hep-th/0504194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C123%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C123%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB399%2C135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB399%2C135
http://xxx.lanl.gov/abs/hep-th/9611101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C56%2C2459
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C56%2C2459
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB306%2C759
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB306%2C759
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB214%2C215
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://xxx.lanl.gov/abs/hep-th/0312171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C4438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C4438
http://xxx.lanl.gov/abs/hep-ph/9312276
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB425%2C217
http://xxx.lanl.gov/abs/hep-ph/9403226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C72%2C2134
http://xxx.lanl.gov/abs/hep-ph/9312333
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB213%2C149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB213%2C149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB212%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB212%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB708%2C115
http://xxx.lanl.gov/abs/hep-th/0409120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C521
http://xxx.lanl.gov/abs/hep-th/9605208


J
H
E
P
0
1
(
2
0
0
6
)
1
0
1

[17] G. Chalmers and W. Siegel, The self-dual sector of QCD amplitudes, Phys. Rev. D 54 (1996)

7628 [hep-th/9606061].

[18] V.E. Korepin and T. Oota, Scattering of plane waves in self-dual Yang-Mills theory, J. Phys.

A29 (1996) L625–L628 [hep-th/9608064].

[19] K.G. Selivanov, On tree form-factors in (supersymmetric) Yang-Mills theory, Commun.

Math. Phys. 208 (2000) 671 [hep-th/9809046].

[20] A.A. Rosly and K.G. Selivanov, Gravitational sd perturbiner, hep-th/9710196.

[21] K.J. Ozeren and W.J. Stirling, MHV techniques for qed processes, JHEP 11 (2005) 016

[hep-th/0509063].

[22] A. Gorsky and V. Lysov, From effective actions to the background geometry, Nucl. Phys. B

718 (2005) 293 [hep-th/0411063].

– 9 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C7628
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C7628
http://xxx.lanl.gov/abs/hep-th/9606061
http://xxx.lanl.gov/abs/hep-th/9608064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C208%2C671
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C208%2C671
http://xxx.lanl.gov/abs/hep-th/9809046
http://xxx.lanl.gov/abs/hep-th/9710196
http://jhep.sissa.it/stdsearch?paper=11%282005%29016
http://xxx.lanl.gov/abs/hep-th/0509063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C293
http://xxx.lanl.gov/abs/hep-th/0411063

